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Abstract

Collisional cooling radio frequency (RF) multipoles are widely used in mass spectrometry, as ion guides and two-dimensional
ion traps. Understanding the behavior of ions in these devices is important in choosing a multipole configuration and op-
timizing its performance. We have developed a computer model based on ion trajectory calculations in the RF multipole
electric field, taking into account ion–ion and ion–neutral interactions. The two-dimensional model for idealized infinite RF
multipoles gives an accurate description of the ion density distribution. We consider first a basic case of a singlem/z ion
cloud in the two-dimensional RF quadrupole after equilibrium is reached. Approximate theoretical relationships for the ion
cloud configuration in the two-dimensional ion trap are tested based on the simulation results. Next we consider the case
of an ion cloud consisting of several differentm/z ion species. The ion relaxation dynamics and the process of establishing
the stratified ion density distribution are observed. Simulations reveal that the ion kinetic energy relaxation dynamics are
dependent on the ion population and bath gas pressure. The equilibrium distribution agrees well with the ion stratification
theory, as demonstrated by simulations for RF quadrupole and octopole two-dimensional ion traps. (Int J Mass Spectrom 222
(2003) 155–174)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Collisional cooling radio frequency (RF) multipole
ion guides are used in mass spectrometry to trans-
mit ions from an intermediate pressure region of an
ion source (e.g., electrospray, or other ion source im-
plementing differential pumping stages) into a higher
vacuum region of a mass analyzer[1–3]. The effective
potential formed by an inhomogeneous RF field[4]
confines ions radially, while collisions with the buffer
gas molecules lead to dissipation of initial ion kinetic
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energy, a process referred to as collisional cooling[1].
Collisionally cooled ions acquire reduced amplitudes
of radial oscillations in the effective potential well and
occupy a region close to the ion guide axis. The re-
duced ion kinetic energy spread provides improved
ion focusing into the next region of an instrument.
Another, rapidly developing application of the colli-
sional cooling RF multipoles is for accumulation of
ions, e.g., prior to transfer to the analyzer trap in FT
ICR or other non-continuous mass analyzers, to im-
prove sensitivity and dynamic range[5–17].

To determine optimal parameters for a collisional
RF multipole, operated as an ion guide or trap, it
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is necessary to understand the ion dynamics in the
device. The ion motion is influenced by the fast
changing RF field, ion–neutral collisions and ion–ion
(space charge) interactions. Theoretical treatments of
the radial ion density distribution in the collisional
RF multipoles have been given in Refs.[18–20], and
computer simulations of the collisional cooling have
been reported in Refs.[1–3,21]. Similar approaches
have been applied for computer modeling of ion mo-
tion in three-dimensional ion traps[22–25]. Most of
the models are single-ion simulations, neglecting the
space charge interaction of ions. More elaborate simu-
lations taking into account the space charge interaction
and using hard sphere models for ion–molecule colli-
sions have been developed for behavior in ICR cells
[26,27]. The collective oscillations of an ion cloud in
three-dimensional traps have been considered[28].

In this work we report the computer simulation re-
sults for the radial ion density distribution for infinitely
long RF multipoles, taking into account space charge
and hard sphere ion–molecule interactions. Simula-
tions were performed for a wide range of pressures
and linear ion densities, and results were compared to
theoretical relationships. We also considered a partic-
ularly relevant situation of an ion cloud consisting of
severalm/z species. A simplified low-ion energy model
suggests ion density distributions consisting of cylin-
drical layers, each of them having a specificm/z, with
higherm/z occupying larger radii[29,30]. This expec-
tation has been examined using direct simulations, and
conditions for establishing suchm/z-stratified distri-
butions are derived.

2. Methods

The simulation scheme used for this study is similar
to approaches in Refs.[21–27]. A hard sphere elastic
collision model is used to describe the ion–neutral
interactions. During the time between collisions the
vacuum equation of motion is used to calculate ion
trajectories:

du

dt
= q

m
(EDC + ERF + ESC) (1)

whereu, q, andm are respectively the ion’s velocity,
charge and mass; the electric field, driving the ion
motion, is calculated as a sum of the DC fieldEDC,
the RF fieldERF, and the space charge fieldESC.
The bold variablesu, EDC, ERF, andESC designate
three-dimensional vectors; all of them are functions of
thex, y, andz coordinates and all exceptEDC are time
dependent.Eq. (1) is integrated numerically, using a
standard second order Runge–Kutta algorithm[31].

A simulation run is organized as follows. Att = 0
an initial configuration of the ion cloud is created by
generating coordinates of a certain number of ions,
Nions, so as to fill randomly the inner volume of the
multipole. Then the ion motion of the whole ensemble
is simulated; the position of each ion is updated every
time step dt, taking into account the Coulombic inter-
action with other ions. The evolution of the ion cloud
is followed up until an equilibrium state is reached.
After the equilibrium configuration is established the
simulation continues over a time interval needed to
collect statistics on the ion density distribution.

We have reported the initial results in Ref.[29] that
included both three- and two-dimensional simulations
of the external accumulation multipoles. The three-
dimensional simulations were necessary to evaluate
the dynamics of ion trapping, relaxation, and extrac-
tion, where the inlet and exit orifice configurations are
of importance. Under the three-dimensional approach
the potential array relaxation technique, similar to one
implemented in the SIMION program[32], is used to
compute three-dimensional configuration of theEDC

and ERF fields of the multipole. The space charge
interaction was computed as a sum of Coulomb fields
acting on each ion from all other ions. The simulation
time for such algorithm is proportional to the number
of particlesNions squared, and the practically accessi-
ble number wasNions ∼1000. To simulate ion densi-
ties of practical interest, each particle was considered
as a group,Ngroup, of ions when computing the space
charge field (the so called super-ion approximation).

The three-dimensional simulations have shown that
upon completion of the collisional relaxation the ion
density per unit length inside a multipole is practically
constant and is not sensitive to the three-dimensional
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fringing fields[29]. This behavior was also expected
from the approximate analytical treatment in Ref.[20].
Thus a more accurate model has been implemented,
that assumes an infinite, two-dimensional multipole.
The model disregards the ion cloud behavior at the
multipole ends, and concentrates on the ion density
distribution in the inner axial region. The DC field
EDC is neglected under this two-dimensional model,
and the RF field is calculated using analytical relation-
ships[33]. The space charge field is calculated assum-
ing that each simulated particle represents an infinite
line of charges, so instead of the Coulombic 1/r2 inter-
action, the 1/r dependence is used forESC computa-
tion. The two-dimensional approach is more efficient
than the three-dimensional one and permits accurate
calculation of the radial ion density distribution. All
results presented here have been obtained using this
two-dimensional approach.

To verify the method stability and to estimate com-
putational errors due to the coarseness of the time step
and the super-ion approximation, the equilibrium ion
distribution was computed for different time steps and
different Ngroup coefficients. Stable and reproducible
results were obtained for time steps of∼10−2 of one
RF period and forNgroupcoefficients sufficiently small
so that the number of super-ions per characteristic ion
cloud dimension is�1. Typical time for a simulation
run ranges from∼1 h to several days using a 600 MHz
Pentium III PC computer. The following additional
tests of the computational accuracy were used. The
ion trajectory integration procedure was verified on
the basis of the low-mass cut-off, or the onset of un-
stable ion motion in the RF only quadrupole, for a
q-parameter exceeding the limit[31]:

qm = 4qVRF

mω2ρ2
≥ 0.908 (2)

We use the notationqm for theq-parameter, to distin-
guish it from the ion chargeq; VRF is the RF voltage
amplitude (i.e., 0-peak and pole to ground voltage),
ω = 2πf is the angular frequency, corresponding
to the RF, f, and ρ is the inscribed radius of the
quadrupole. The model demonstrated exact coinci-
dence with the theoretical instability onset for the

time steps dt � 10−2/f (the tests were performed
under conditions of a negligible space charge). The
multiparticle approach for the space charge field com-
putation was tested by comparison of the radial ion
density distribution with the theoretical distribution
derived for the low-ion energy case. Good agree-
ment was achieved for the two-dimensional model,
as will be discussed in the following section. The
three-dimensional model produced a rough approxi-
mation of the radial ion density for practically useful
values of theNgroup and dt parameters, however,
characteristic dimensions of the ion cloud still can
be calculated under this model with relative accu-
racy∼10−2. When the number of simulated particles
was increased (andNgroup proportionally decreased),
the computed radial distribution converged to one
obtained from two-dimensional model, but it took
considerably longer computation times.

An important parameter related to the accuracy of
the super-ion space charge simulations is the dimen-
sion of an ion cloud representing the super-ion,Rgroup.
If this parameter is set to 0, the Coulombic interaction
of two closely positioned super-ions results in overes-
timating of the Coulombic field. For a long simulation,
using t � 106 time steps (t � 10 ms) this may result
in increased ion kinetic energy, due to accumulation
of computational errors. This artifact is pronounced
for low pressures,p < 10−4 Torr, where collisional
relaxation does not mask the energy increase. The
problem may be solved by setting a finite super-ion
radiusRgroup, so that for a short distanced < Rgroup

the force between two super-ionsEij is calculated un-
der the assumption that the charge is distibuted uni-
formly inside each super-ion. ThusEij ∝ d for d <
Rgroup, so that close position of two super-ions does
not lead to an overestimation of their interaction. The
value Rgroup is calculated from a condition that the
volume of all super-ions must approximately cover the
total ion cloud volume, thusRgroup ∝ N−3

ions for the
three-dimensional model andRgroup ∝ N−2

ions for the
two-dimensional model. We see that the spatial resolu-
tion of the space charge simulation approach, limited
by theRgroupvalue, may be improved by using a larger
number of super-ionsNions, and the two-dimensional
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model allows one to reach a better resolution for a
givenNions number. In the simulations reported in the
following description, we have usedRgroup ∼ 10−2 ρ

for the two-dimensional model.
A possible alternative to the super-ion approach is

the particle-in-cell method (PIC) (see Refs.[26,27]
and references therein). Under the PIC approach
the space charge electric field is calculated not by
summing theN2

ions Coulomb fields, but rather from
a computational grid on which Poisson’s equation
is solved numerically for the potential at each time
step. The PIC’s computational timeTcomp is propor-
tional toNions, notN2

ions, and the number of simulated
particles may be increased up to >105. However,
it does not necessarily result in improved spatial
resolution of a simulated ion cloud, because the res-
olution is now defined by the grid step sizeDgrid.
The simulation timeTcomp becomes proportional to
a size of computational mesh, thusTcomp ∝ D2

grid for

two-dimensional model andTcomp ∝ D3
grid for three-

dimensional model. For example the computational
mesh used in the two-dimensional simulations[26]
had ∼100 mesh steps in one-dimensional, which is
roughly equivalent to the resolution ofRgroup ∼ 10−2

ρ estimated earlier for the super-ion approach used
here. A distinctive feature of a system under consid-
eration here is that very fast RF oscillations of ions
define a small time step,<10 ns forf > 1 MHz, and
the total time interval needed to be simulated is >0.1 s,
so the total number of time steps may be >107. In the
case of the PIC algorithm it means that the Poisson’s
equation must be solved numerically 107 times during
a single simulation. This would result in impractically
long computation time, even for a very rough com-
putation mesh. The super-ion approach used here has
been realized on a regular desktop PC computer us-
ing Windows 98 operating system, and may be run in
background mode on several PCs, to look at several
different configurations at the same time.

The ion–neutral interaction model used in the simu-
lations is based on the classical hard spheres collisions
approach. For the case of relatively large biomolecules
of interest it has been shown[34–36]that the hard-core
cross-section dominates the ion-dipole cross-section.

The so-called diffuse scattering model produced a bet-
ter description of the ion–neutral collisions, although
the specular elastic scattering has not produced much
different results in terms of the cross-section of colli-
sions[35]. We use here the classical elastic hard sphere
model; the diffuse scattering, or inelastic collisions,
may also be incorporated, but are not considered here.

The hard sphere collision algorithm implemented
in our model is based on the Monte–Carlo simulation
of collisions of a hard sphere representing an ion with
hard spheres representing the bath gas molecules. The
velocity of the bath gas moleculesv is assumed to
be distributed according to the Maxwell–Boltzmann
distribution:

fm(v)= 4πv2(πv2
kT)

(−3/2)exp

(
− v2

v2
kT

)
;

v2
kT = 2kT

mg
(3)

wherek is the Boltzmann constant,T andmg are the
bath gas temperature and molecular mass. The fre-
quency of collisions is calculated from the relative
velocity vrel as z = nσvrel, wheren is the number
density of the bath gas molecules,σ is the collision
cross-section. To find an overall probability of colli-
sions taking into account all possible magnitudes and
directions of neutrals, it is convenient to consider first
a simplified velocity distribution, in which all neu-
trals have the same velocityv, uniformly distributed in
all possible directions. This so-called mono-velocity
model has been described in Ref.[18]. For the ion
velocity u we have the relative velocityvrel = (v2 +
u2 − 2uv cosθ)1/2, whereθ is the angle between the
two velocity vectors. Averaging over all possible di-
rectionsθ gives an average relative velocity for the
mono-velocity modelva:

va(u, v)=
∫ π

0

√
v2 + u2 − 2uv cosθ dΩ

=



u+ v2

3u
, for v < u

v + u2

3v
, for v ≥ u

(4)
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where dΩ = 1/2 sinθdθ is the element of the
solid angle. Now we can take into account the
Maxwell–Boltzmann distribution, arriving at the fre-
quency of collisions as a function of the ion velocity:

z(u) = nσvm(u); vm(u) =
∫ ∞

0
fm(v)va(u, v)dv

(5)

Herevm(u) is the relative velocity of collisions aver-
aged over the Maxwell–Boltzmann distribution. The
function z(u) was calculated and stored in a table for
a range of all possible ion velocitiesu. Note that for
ion velocities much higher than the thermal velocity,
u � vkT, the Eq. (4) givesva ∼ u andz(u) ∼ nσu.
Thus, practically thez(u) table needs to be calculated
up tou ∼ 10vkT. Having thez(u) tabulated it is easy to
define the probability of collisions on each time step
dt: Pc = z(u)dt . It was assumed here that the time
step dt is small enough so thatPc � 1. At each time
step the program generates a random numberR, uni-
form between 0 and 1; ifPc > R then the collision
event occurs.

This approach for the collision probability compu-
tation is different from approaches used elsewhere,
where the relative velocity is computed on the ba-
sis of the neutral velocity taken randomly from the
Maxwell–Boltzmann distribution. The advantage of
our approach is that the collision probabilityPc for
each time step corresponds to the accurate theoretical
value, whereas the alternative approach gives an ac-
curate result only on average, after statistically large
number of time steps, when all possible values from
the two-dimensional (v,θ ) space are sampled. Our ap-
proach also can be more efficient in terms of com-
putation time, because it is not necessary to calculate
the relative velocityvrel = (v2 +u2 −2uv cosθ)1/2 at
each time step.

The collision is simulated by giving a random di-
rection to the ion velocity vector in the center-of-mass
frame, as described in Refs.[3,21,26]. To define the
center-of-mass velocity of an ion all three components
of the neutral’s velocityvx , vy , andvz, are needed.
We obtain the components using a randomly gener-
ated absolute velocityv, the scattering angleθ de-

fined earlier, and the azimuthal angleϕ. Here we take
into account that the probability of collisions is not
the same for each (v,θ ) pair. Two random numbers,
uniform from 0 to 1, are generated, to definev and
θ values, according to the Monte–Carlo method of a
projection of a variablex, having distributionfx(x), to
a random numberR(x), uniform from 0 to 1[37]:

R(x) =
∫ x

0
fx(ξ)dξ (6)

Consider first the distributionfv of the neutral’s ve-
locity v. Using the same procedure as for deriving the
average relative velocityvm(u) (5), we can obtain the
following distribution:

fv(u, v) = fm(v)
va(u, v)

vm(u)
(7)

The distribution for theθ angle follows from the fre-
quency of collisions as a function ofθ . After the
neutral’s velocityv is generated we can use the mono-
velocity relationships (4) to define theθ distribution
as:

fθ (θ) = sinθ

2va(u, v)

√
v2 + u2 − 2uv cosθ (8)

Thus, applying the Monte–Carlo algorithm (6) first
for fv and then forfθ distribution, we can generate the
(v,θ ) pair for a collision. The azimuthal angleϕ is
randomly distributed from 0 to 2π . After all three pa-
rameters are generated the collision is defined in the
ion’s coordinate system. Then the transition is made
to the lab frame. All three components of the ion
velocity are calculated for the center-of-mass system
(CMS). The ion velocity after collision is calculated
as the velocity before collision in the CMS, deflected
at a random angle, the same manner as in other im-
plementations of the hard sphere algorithm[3,21,26].
This relatively complicated algorithm can be still
quite efficient because the collision event typically
occurs after a large number of time steps. To speed up
the computation we have used pre-calculated tables
for va(u,v) andfm(v) functions.

Several tests have been made to verify the hard
sphere collisions algorithm, to make sure that both the
principal part and the coding are correct. In the case
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when no electric field is applied the distribution of the
velocity of ionu approaches the Maxwell–Boltzmann
distribution, same as (3), but with molecular massmg

replaced by the ion massm. In accordance with the
theory[18], the collisional relaxation from initial ion
velocity to the thermal equilibrium state proceeds ex-
ponentially with characteristic time:

τ = 3(m+mg)

4mgnσukT
; ukT =

√
8kT

πmr

(9)

wheremr is the reduced mass. Another test is based
on the collisional relaxation path, defined as the length
of a linear path of the ion before its initial veloc-
ity is dissipated. The process was simulated using the
hard sphere model described here, and showed a close
agreement with a dependence estimated analytically,
as reported in Ref.[18]. The random walk of an ion
after collisional relaxation may be described by a dif-
fusion coefficientD. The mean-squared displacement
〈l2〉 of an ion over a time intervalt, corresponding to a
statistically large number of collisions, was calculated
and compared with the theoretical relation:〈l2〉 =
6Dt, and a close agreement was obtained. Finally, the
test of the drift ion motion has been done, under which
an average ion drift velocity,udrift , was calculated. An
electric fieldE was chosen so that the drift velocity
is small compared to the thermal velocity of the bath
gas molecules,udrift � vkT. The result agreed well
with the theoretical relationudrift = KEE. The mobil-
ity coefficientKE and the diffusion coefficient values
D were calculated according to the classical theory of
mobility [38]. Here it is convenient to express the two
constants through the velocity relaxation timeτ [18]:

KE = q

m
τ ; D = kT

q
KE = kT

m
τ (10)

Thus, all these tests of the new hard sphere collision
algorithm have confirmed that it provides an accu-
rate description of this classical model. The collisional
cooling dynamics simulations reported elsewhere use
simplifying assumptions. The problem is complicated
first because the drag coefficient approach must be ap-
plied when the ion energy is∼10 eV[35,36], and sec-
ond, the non-equilibrium statistical description has to

be used on the final stage of the ion relaxation, when
the ion–neutral interactions have mainly a random
thermal origin. Additional complication arises due to
a strong non-uniform RF electric field that causes the
kinetic energy of ions to change from 0 up to∼10 eV
each RF period. To adequately describe this complex
system one needs a reliable and accurate model for
the ion–neutral interactions. Here we have chosen the
classical hard sphere model that is capable of describ-
ing all the processes of the ion collisional relaxation,
using no additional assumptions.

3. Results and discussion

The ion density distribution was found to be cylin-
drically symmetric up to the statistical uncertainty of
computations. Thus, the results can be presented as the
ion number density (i.e., the number of particles per
unit volume) vs. radius,n(r). Fig. 1 shows the equi-
librium ion density distribution in the RF collisional
quadrupole, for three different linear charge densities.
The RF parameters are typical for an external accu-
mulation setup:VRF = 60 V (0 to peak), frequency
600 kHz. The inscribed radius of the quadrupole is
ρ = 4 mm. Singly charged ionsm = 1000 are con-
sidered, corresponding to aq-parameterqm = 0.10
Eq. (2). The bath gas parameters used are: molecu-
lar massmg = 29, pressure of 10 mTorr, and cross-
section of the ion–molecule collisionsσ = 200 A2.

Fig. 1 shows the ion number density radial profiles
for three different linear charge densities. To under-
stand this behavior, we can use simple relationships
for the basic ion density parameters, obtained previ-
ously. The simplest approach is based on the assump-
tion of zero random energy, or zero temperature of ions
[19,20]. From the balance of the space charge force
and the effective RF focusing force one can obtain the
following expression for the maximum possible ion
number density in the RF quadrupole:

n0 = qmε0
VRF

qρ2
(11)

Thus the ion number density is a constant that is
independent of the radial coordinate and is defined
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Fig. 1. Ion number density distribution simulated for RF collisional quadrupole, for three linear ion density values: 1× 10−13 C/m
(Rq = 0.1 mm), 2.5 × 10−11 C/m (Rq = 1.5 mm), and 1× 10−10 C/m (Rq = 3 mm). Estimated thermal radiusRkT = 0.5 mm. Ions are
singly charged (m = 1000). RF quadrupole parameters are as follows:ρ = 4 mm,VRF = 60 V, frequency 600 kHz,qm = 0.10, and pressure
10 mTorr.

by the RF quadrupole parameters. Under the zero-
temperature approximation the number density of ions
is always equal to the maximum number densityn0,
no matter how many ions are stored. The linear charge
densityQl may be expressed via the number density
as follows:

Ql = πR2
qqn0 (12)

When the ion cloud radiusRq reaches the inscribed
quadrupole radiusρ, the linear charge density reaches
the maximum possible charge capacity:

Qmax = πρ2qn0 = πqmε0VRF (13)

This relationship gives an upper estimate of the RF
quadrupole charge capacity[20]. For linear charge
densities lower thanQmax the ions form a cylinder
with a constant number densityn0 (11), and the radial
dimension

Rq = ρ

√
Ql

πε0qmVRF
(14)

This simplified picture roughly agrees with the sim-
ulation results inFig. 1. The number density, plotted
in n0 units, tends to 1 for the two higher linear charge
densities, confirming the estimation given byEq. (11).

The radial size approximately agrees withEq. (14)
(Rq = 1.5 mm forQl = 2.5 × 10−11 C/m andRq =
3.0 mm forQl = 1×10−10 C/m). However, unlike the
zero-temperature distribution, the simulated distribu-
tion posses a wing, extending to radii >Rq . This “dif-
fusion spread” has been considered in[20]:

,r ≈
√

16ε0kT

q2n0
(15)

For the values of parameters used inFig. 1 one can
estimate the diffusion spread usingEq. (15), as,r ≈
1 mm. This approximately corresponds to the diffu-
sion spread size shown inFig. 1. We conclude that the
relationship (15) gives a reasonably good estimation
for the radial spread of the wing of the ion density
distribution. However, it must be emphasized that un-
der certain conditions the random component of the
ion kinetic energy can be significantly higher than the
thermal energykT. This can be expected when ions
are “heated” by an intense RF excitation, either by
increased RF fields at large radial positions, or when
the qm parameter approaches the low-mass cut-off,
qm ∼ 0.9. Simulations for the increased ion energy for
the latter case have been reported in[39]. Under such
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conditions the value given byEq. (15)underestimates
the actual radial spread. Alternatively,Eq. (15)may
produce overestimation for low-pressure conditions
considered later.

The ion density distribution corresponding to the
low linear ion density,Ql = 10−13 C/m, in Fig. 1,
does not reach the maximum number densityn0. In
this case the zero-temperature approximation should
be replaced by an approach that assumes a negligi-
ble space charge and a random ion kinetic energy at
the thermal level[18]. In this case the equilibrium ion
density distribution takes the form of the Boltzmann
distribution for a thermal particle moving in the po-
tential well formed by the effective potential. For the
case of RF quadrupole this corresponds to the Gaus-
sian distribution[18–20]:

n(r) ∝ exp

(
− r2

R2
kT

)
(16)

The average-squared radial positionRkT is as follows
[18]:

RkT = 2ρ

√
kT

qmqVRF
(17)

For the conditions ofFig. 1, RkT = 0.5 mm (it can be
seen thatRkT = ,r/2 by definition). We see that the
ion density distribution for the lowest linear charge
density roughly agrees with the thermal approxima-
tion. One can predict the transition to the thermal dis-
tribution, by comparing the estimated valuesRq (14)
and RkT (17). Here we haveRq = 0.1 mm �RkT ,
meaning that the thermal spread defines the shape of
the distribution.

Summarizing the results forFig. 1we conclude that
the simple approximate relationships allow one to pre-
dict the main characteristics of the ion density distri-
bution. The maximum charge capacity estimated using
the zero-temperature approximation,Eq. (13), seems
to be reasonably good. For the conditions ofFig. 1,
Eq. (13)givesQmax = 1.7 × 10−10 C/m. However, a
more realistic estimation based upon the simulation in
Fig. 1 shows that forQl = 1 × 10−10 C/m the diffu-
sion wing already reaches the quadrupole rods. Thus,

one may expect reduced ion capacity for ion species
having a long diffusion wing.

Fig. 2 shows the ion number density distributions
having various diffusion spreads. The results of two
separate simulations are shown in each figure, one
for singly charged ionsm = 1000 and the other for
+17 ions havingm = 17,000.Fig. 2ashows the case
of a relatively weak RF focusing,VRF = 30 V. The
diffusion spread estimated usingEq. (15) is ,r ≈
2.1 mm for singly charged ions and,r ≈ 0.5 mm
for +17 ions. These estimates agree well with the
diffusion spreads seen inFig. 2a.

The maximum charge capacity (13) for the condi-
tions inFig. 2aisQmax = 4.2×10−11 C/m, four times
larger then the value used for the simulations. How-
ever, due to the extended diffusion wing we may ex-
pect that the singly charged ions inFig. 2aapproach
the maximum capacity limit at a lower value ofQl =
10−11 C/m.

Fig. 2b shows density distributions for the case of
increased RF voltage,VRF = 150 V. Because of the
increased charge capacity, we have specified an in-
creased linear charge density in order to have the ion
cloud radius comparable to the one inFig. 2a. Now
the diffusion spread (15) gives 0.41 and 0.1 mm, cor-
respondingly. The diffusion spread is small compared
to the radial size of the ion cloud, and the charge ca-
pacity approaches the zero-temperature limit (13) for
each of the ion species considered.

The results inFig. 2were obtained for the bath gas
pressure of 10 mTorr. At this pressure the mean-free
path for the ion–neutral collisions is smaller than the
quadrupole radial dimensionρ. The theoretical rela-
tionships (11–17) do not take into account the bath gas
pressure. Thus, it is of interest to model the ion den-
sity distribution for various pressure conditions.Fig. 3
shows the ion density distribution simulated for the
bath gas pressure of 0.1 mTorr, i.e., two orders of mag-
nitude lower pressure compared to one used inFigs. 1
and 2. The free path becomes larger than the charac-
teristic radial sizeρ, so one may expect the ion density
distribution to be different from the higher pressure
one. For comparison the 10 mTorr distributions for
ionsm = 1000 (+1) andm = 17,000 (+17) are also
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Fig. 2. Diffusion spread of the ion density distribution. The ion cloud consists of a single ion species havingm/z = 1000. Singly charged
ions (m = 1000) and+17 ions (m = 17,000) are considered, with ion–neutral collision cross-section 200 and 3400 A2, respectively. (a)
1 × 10−11 C/m, VRF = 30 V, frequency 600 kHz,qm = 0.05, pressure 10 mTorr, andRq = 1.95 mm. (b) 4.8 × 10−10 C/m, VRF = 150 V,
frequency 600 kHz,qm = 0.25, pressure 10 mTorr, andRq = 2.7 mm.

shown. Instead of the number density, here we show
the radial density 2πrn(r), in order to emphasize the
behavior at larger radii. One can see that the diffusion
spread for the lower pressure becomes slightly shorter.
However, the pressure-dependent difference is not as
significant as the dependence on the ion charge.

The time needed for the ion density distribution to
reach equilibrium at the 0.1 mTorr pressure is�10 ms.
The results shown inFig. 3 are based on the statistics
collected for simulation times >25 ms. The time step
dt for the ion trajectory tracing must be much smaller
than the RF period; dt ≈ 20 ns has been used. Thus,
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Fig. 3. The diffusion spread for pressure 10 and 0.1 mTorr for singly charged ions (m = 1000). The radial ion density distribution is
shown. For comparison the results for+17 ions (m = 17,000) for 10 mTorr are shown (circles). The linear charge density is 1×10−11 C/m
(Rq = 1.95 mm),VRF = 30 V, frequency 600 kHz, andqm = 0.05.

the simulation for 0.1 mTorr pressure required a long
computation time,∼2 days. It takes additional analy-
sis of the possible computation errors to arrive at quan-
titative results for this pressure range. The conclusion
that can be reached based on the results inFig. 3 is
that the approximate relationships can still be roughly
applicable down to pressures of∼0.1 mTorr.

These results for the diffusion spread allow one
to predict conditions for preferential accumulation of
highly charged ions having a high-molecular mass.
This should take place under a reduced RF potential,
when smaller ion species can escape radially through
the diffusion wing. One more necessary condition is
that the ion current must be small, so that the time
of filling the quadrupole is much longer than the col-
lisional relaxation timeτ (9), to ensure a sufficient
collisional relaxation of ions. This external accumula-
tion mode can be of interest when the sensitivity for
large ion species needs to be increased, for example,
for measurements for intact proteins. Note that this
approach differs from the usual low-mass cut-off in
RF quadrupoles, when lowm/z ions haveq-parameters
above the stability limit (2). Here, instead of increas-
ing qm, we suggest using a reduced RF voltageVRF.

External accumulation is thus obtained using a low-
input current and long accumulation time conditions,
to provide preferential accumulation of species having
a shorter diffusion spread. Thus, it should be possible
to distinguish between ions having similarm/z values,
but different masses.

We now move our attention to a more complicated
case of an ion cloud consisting of severalm/z ion
species. It has been reported that the space charge
can force the ions of differentm/z to occupy different
radial positions inside the collisional RF multipole.
The phenomenon was observed in computer simula-
tions and confirmed experimentally for collisional RF
quadrupoles used both for the external accumulation
and as ion guides[29]. The theoretical treatment has
also been reported in Refs.[29,30]. The accurate two-
dimensional computer model used in the present study
has allowed us to obtain additional details on the ion
stratification phenomenon.

The simulations were performed in the same way as
described earlier, but this time the ion cloud consisted
of three ion species, havingm = 6000 and charge
states+4, +5, and +6. The RF quadrupole para-
meters are as follows: inscribed radiusρ = 4 mm,
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Fig. 4. Radial ion density distribution for an ion cloud consisting
of three charge statesz = +4, +5, and+6 of ions (m = 6000)
for bath gas pressure of 10−3 Torr. The evolution is shown for
cooling times (a)t = 0.24 ms, (b)t = 0.80 ms, and (c)t = 2.5 ms.
At t = 0 ions having thermal kinetic energy were distributed

VRF = 100 V, and frequency 600 kHz. This system
roughly corresponds to the experimental study on the
external accumulation of insulin ions reported previ-
ously [29]. The collision cross-section used for the
simulations,σ = 1200 A2, was estimated using in-
terpolation of experimental cross-section values mea-
sured by others for protein ions[34,35].

Fig. 4shows the radial ion density distribution as it
evolves with the cooling timet. Initial conditions were
specified as follows: the thermal kinetic energy ions
were distributed uniformly over a cylinder of 4.2 mm
diameter. The buffer gas was assumed to have molec-
ular massmg = 29 (i.e., the weighted average of the
N2 and O2 molecular masses) and a number density
corresponding to 1 mTorr pressure. The collisional re-
laxation time for the ion velocity, estimated for these
parameters usingEq. (9), is τ = 0.8 ms. The radial
density was calculated as the number of macro-ions
per 0.04 mm radial bin. To have sufficient statistics,
this calculation was repeated 100 times over a short
time interval.Fig. 4a and bshow the radial ion den-
sity distribution for t = 0.3τ = 0.24 ms, andt =
τ = 0.8 ms when the relaxation of ions is still under
way. After the relaxation timet � τ the radial den-
sity takes an equilibrium shape shown inFig. 4c. This
stationary distribution can be compared with one de-
rived theoretically[29,30] based on assumptions of a
high-space charge and low-ion kinetic energy. The ap-
proximation results in a constant ion number density
n0, same as defined byEq. (11). Each ion species,i,
must be located in a separate cylindrical layer, from
R0i to R1i , so that the total charge per the quadrupole
length is equal to the stored linear chargeQi for the

distributed uniformly over a cylinder of 4.2 mm o.d. The number
of super-ions used for the simulation is 450 (150 for each charge
state) per 4 mm of the quadrupole’s length; the charge of each
super-ion corresponds to 416 ion charges. The linear charge den-
sity is 4× 10−11, 5× 10−11, and 6× 10−11 C/m for each charge
state correspondingly. The RF quadrupole parameters are as fol-
lows: ρ = 4 mm, VRF = 100 V, frequency 600 kHz,qm = 0.11,
qm = 0.14, andqm = 0.17 correspondingly. The radial borders of
the stratified ion structure estimated under the low-ion energy ap-
proximation[29,30]are 0–1.432 mm for+6 ions, 1.568–2.124 mm
for +5 ions, and 2.374–2.772 mm for+4 ions.
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i-th ion species:

Qi = π(R2
1i − R2

0i )ezin0 (18)

Here zi is the charge state of thei-th ion species.
An additional equation for the unknown radiiR0i ,
R1i can be obtained from the balance of the space
charge field and effective RF focusing field[20,30].
The radial positions estimated using this approach
are listed in the caption forFig. 4. One can see that
the simulated equilibrium distribution inFig. 4cpos-
sesses radial positions close to the estimated values.
The radial density 2πrn(r) for the+6 and+5 charge
states increases proportionally with the radiusr, which
agrees with the expected constant ion number density,
n(r) = n0. The borders of each layer are diffused,
similar to ion density distributions for singlem/z ion
clouds considered earlier. This radial spread accounts
for the observed reduced ion number density for
+6 ions.

Summarizing results inFig. 4, we conclude that
the stratified ion density distribution establishes itself
upon the completion of the collisional relaxation. The
number density and radial positions of the simulated
equilibrium distribution agree well with theoretical
estimates.

Fig. 5. The collisional relaxation of the ion kinetic energy for a bath gas pressure 10−3 Torr. The initial ion velocity is directed along
the quadrupole axis and corresponds to 10 eV per elementary charge. The axial componentEz is plotted in units of the thermal energy
Ekt = 0.5kT ≈ 1/80 eV. The RF quadrupole parameters are same as forFig. 4. The simulation involves 900 macro-ions, each carrying
208 ion charges.

The direct computer model used in our study is ca-
pable of realistic simulation of the ion kinetic energy
evolution. There is no established formalism describ-
ing the collisional cooling dynamics. The drag coeffi-
cient approaches reviewed in Ref.[35] do not account
for the discrete nature of collisions and other realis-
tic details, such as the combination of the collisional
cooling in the axial direction and radial excitation of
ions by the intense multipolar RF electric field.

The simulation results for the collisional cooling
dynamics for the bath gas pressure 1 mTorr are pre-
sented inFigs. 5 and 6. The initial ion kinetic energy
is Ez = 10 eV per elementary charge, with the ini-
tial velocity vector directed along the quadrupole axis.
All other parameters for the ion cloud and for the RF
quadrupole are the same as used for the simulations
in Fig. 4. It is expected from the theoretical study
[18] that the ion velocity will be damped by colli-
sions, with the characteristic exponential time constant
τ , Eq. (9), until thermal equilibrium is established.
To verify this assumption we have plotted the ion ki-
netic energy in the units of thermal energy per one
degree of freedom,Ekt = kT/2 ≈ 1/80 eV. It is seen
from the logarithmic plotEz(t) in Fig. 5 that the ion
kinetic energy is reduced 10 times each∼1 ms. The
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Fig. 6. The evolution of the radial component of the ion kinetic energyEr . Same conditions as inFig. 4 are used;Er is expressed in units
of the thermal energyEkt = 0.5kT ≈ 1/80 eV.

characteristic time estimated usingEq. (9) for condi-
tions of the simulation isτ ≈ 0.8 ms, meaning that the
kinetic energy must be reduced 10 times over the time
interval of 0.5τ ln 10 ∼ 1 ms. In fact for higher ion ki-
netic energies the rate of collisional cooling must in-
crease[18,35]. Such a trend can be observed inFig. 5.
After 3 ms of the collisional relaxation the axial com-
ponent of the kinetic energy reaches a stationary level,
just slightly above the expected thermal energy value.
We can conclude that both the rate of collisional cool-
ing and the equilibrium energy level agree with the es-
timations based on the collisional cooling mechanism.
(Note that in our two-dimensional model we disregard
the axial electric fields arising from the ion–ion in-
teraction, because each ion is replaced by an infinite
charged cylinder when the space charge interactions
are calculated. Thus, the contribution of the ion–ion
interaction to kinetic energy relaxation applies here
only for the radial ion kinetic energy.)

Fig. 6 shows the radial component of the average
ion kinetic energy, obtained in the same simulation
as inFig. 5. This time there is no theory available to
treat the simulation results. Transformation of the ax-
ial energy component into the radial one is of great

practical interest, because it may define efficiency of
the RF quadrupole collisional cells or two-dimensional
ion traps. It is often assumed that the stationary ki-
netic energy approaches the thermal level, however,
it is difficult to estimate theoretically how the RF ion
motion will influence the thermal equilibrium. In or-
der to distinguish between the energy of RF oscilla-
tions and the random energy of the ion motion, we
have used the instantaneous ion velocities taken for
the RF phase corresponding to zero energy of the RF
oscillations. Thus, the radial kinetic energyEr consid-
ered here excludes the energy of RF oscillations, and
can be regarded as the energy of an averaged, or sec-
ular ion motion[33]. We also use the term “random
energy” because it is randomly distributed over theXY
coordinate plane, as a result of relaxation. The same
units of thermal energy are used as inFig. 5. The ra-
dial energyEr is calculated as a sum of two energy
componentsEx andEy , so the thermal level would be
Er = 2Ekt. The simulation has resulted in the follow-
ing stationary radial kinetic energy levels: 2.6Ekt for
+4 ions, 1.9Ekt for +5 ions, and 1.1Ekt for +6 ions.
Higher than thermal energy for+4 ions can be ex-
plained by a higher intensity of RF excitation, due to
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Fig. 7. The equilibrium radial ion density distribution for a bath gas pressure 10−4 Torr. All other parameters are same as inFig. 4.

higher radial positions for these ions, seeFig. 4c. En-
ergy levels lower than the expected 2Ekt , as observed
for +6 ions, were unexpected. A possible explanation
is presented as follows.

Simulations showed that the sub-thermal ion energy
is observed for low-pressure conditions.Fig. 7 shows
the equilibrium radial ion density distribution for the
bath gas pressure 10−4 Torr. All other parameters are
same as inFig. 4. The diffusion spread is reduced rel-
ative to the higher pressure case inFig. 4c, which can
be seen in the slightly reduced overlap of the distri-
bution peaks. Note that the free path before collisions
is ∼1 cm, one order of magnitude larger than for the
1 mTorr pressure simulation, in apparent contradiction
with sharp radial borders seen inFig. 7. We have ar-
rived at the conclusion that the sharper radial struc-
ture is due to the lower random kinetic energy of ions
observed at lower pressures, as confirmed by the fol-
lowing results.

Figs. 8 and 9show the average ion kinetic energy
evolution, simulated for 0.1 mTorr bath gas pressure.
The initial kinetic energy of ions isEz = 1 eV per el-
ementary charge; all other parameters are same as for
Figs. 5 and 6. The characteristic time for 10 times de-
crease of the axial kinetic energy is∼10 ms, consis-

tent with the pressure-dependent collisional relaxation
timeτ , Eq. (9). The equilibrium energy approaches the
expected thermal level,Ez ∼ Ekt for t > 20 ms. The
radial kinetic energy shows a different cooling rate,
reaching stationary levels in∼10 ms;+6 ions reach a
stationary level in a shorter time than+5 and+4 ions.
The simulation has resulted in the following station-
ary radial kinetic energy levels: 0.6Ekt for +4 ions,
0.4Ekt for +5 ions, and 0.2Ekt for +6 ions. All three
ion species have arrived at random radial kinetic en-
ergy levels considerably lower than the expected ther-
mal equilibrium level 2Ekt . A possible explanation for
the sub-thermal radial energies is ion–ion cooling: all
ions are incorporated into the space charge defined
structure, and an excess energy of each ion becomes
eventually distributed over the whole ion ensemble.
The stationary random ion kinetic energy is defined by
equilibrium between the excitation from ion–neutral
collisions and the ion–ion relaxation. At lower pres-
sures,∼10−4 Torr, the ion–neutral collision rate is de-
creased and the equilibrium shifts to the sub-thermal
level. In other words, in the low-pressure limit the ther-
mal equilibrium ion velocity is defined by the effec-
tive mass that approaches the total mass of the whole
ion ensemble.
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Fig. 8. The collisional relaxation of the ion kinetic energy for a bath gas pressure 10−4 Torr. The initial ion velocity is directed along
the quadrupole axis and corresponds to 1 eV per elementary charge. The axial componentEz is plotted in units of the thermal energy
Ekt = 0.5kT ≈ 1/80 eV. All other parameters are same as forFig. 4.

It must be emphasized that the lower-than-thermal
energies are obtained for the random part of the ra-
dial component of the ion kinetic energy, which does
not include the kinetic energy of RF oscillations of
ions,WRF. The latter value is equal by definition to the
pseudo-potential of the RF multipolar field at the ion’s
radial position[33]. For the higher ion populations the
ion cloud extends to the higher radii, and the kinetic
energy of RF oscillations increases. For example, for

Fig. 9. Evolution of the radial component of the ion kinetic energyEr obtained from the same simulation as inFig. 8. Er is expressed in
units of the thermal energyEkt = 0.5kT ≈ 1/80 eV.

+4 ions oscillating around 2.7 mm radial position, for
parameters inFig. 4, WRF ∼ 20 eV per elementary
charge. This results in an ion–neutral collision energy
the same as if 20 eVlab ions are injected into the col-
lisional cell. The high energy of collisions results in
ion fragmentation, called “multipole storage assisted
dissociation” (MSAD)[7–10,40]. The ion population
corresponding to the onset of MSAD has been theo-
retically estimated in[20]. Thus, lower-than-thermal
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Fig. 10. The average radius of ions+4 (squares),+5 (circles),
and+6 (triangles) obtained from the same simulation as inFigs. 8
and 9.

random energies discussed earlier can be accompanied
by quite high-collision energies and consequently high
internal ion energies.

Fig. 10 shows an average radial position vs. cool-
ing time, calculated for each of the three ion species
considered, for 1 eV initial ion energy and 10−4 Torr
pressure, i.e., same conditions as forFigs. 8 and 9.
The average radius arrives at the stationary level in
∼1 ms, much faster than it takes for the energy relax-
ation. This observation may be of interest for experi-

Fig. 11. The equilibrium radial ion density distribution for a zero space charge conditions. Simulation results (symbols) are plotted together
with the theoretical low-charge ion density distributions, calculated for each charge state usingEq. (19). The characteristic radial width
RkT is calculated usingEq. (17): 0.190 mm for+4 ions, 0.152 mm for+5 ions, and 0.127 mm for+6 ions. The simulation uses 450
super-ions (150 for each charge state); the charge of each super-ion is set to 0 to cancel the ion–ion interaction. The bath gas pressure
10−4 Torr. All other parameters are same as inFigs. 4 and 7.

mental conditions, when externally accumulated ions
do not have sufficient time for complete collisional
relaxation, e.g., due to a low-bath gas pressure. It fol-
lows that reduced accumulation efficiency for higher
m/z ions may be expected under such conditions, al-
though not as distinct as for fully relaxed ions.

To verify the assumption, that the space charge in-
teractions are responsible for sub-thermal secular ion
kinetic energy, we have performed simulations for the
same conditions as inFigs. 8 and 9, but with zero lin-
ear charge density. This was done by specifying a zero
charge for each macro-ion for the ion–ion interaction
calculations. The resulting radial ion density distribu-
tion is shown inFig. 11. The simulation results for dif-
ferent charge states are shown using the same symbols
as in previous figures. The corresponding curves show
the theoretical radial ion density distributions expected
for the case of a negligible space charge[18,19]:

2πrn(r) = Nl
2r

R2
kT

exp

(
− r2

R2
kT

)
(19)

The characteristic radial sizeRkT is defined by
Eq. (17). Integration of the distributionEq. (19)over
radius gives the number of ions per unit length of
the quadrupoleNl . The relationship (19) represents
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the Boltzmann distribution for thermal particles in a
potential well created by the pseudo-potential of the
RF quadrupole electric field[18]. Note that there are
no adjustable parameters in (19), and the theoretical
curves are plotted inFig. 11 exactly as defined by
Eqs. (17) and (19). The good agreement between the
theoretical distributions and simulated distributions
for each charge state inFig. 11shows that under zero
space charge conditions ions arrive at thermal equi-
librium with the bath gas. The average kinetic energy
of the secular ion motion produced by this simulation
is Er = (2 ± 0.2)EkT andEz = (1 ± 0.2)EkT , corre-
sponding to the thermal energyEkT per each degree
of freedom. The results support the assumption that
the ion space charge gives a significant contribution
to the ion radial kinetic energy relaxation under the
low-pressure conditions.

The infinite two-dimensional space charge ele-
ments used in our model allow for accurate modeling
of radial ion–ion interactions, but disregard the ax-

Fig. 12. The equilibrium radial ion density distribution for the RF octopole. The ion cloud consists ofm = 6000 ions having three charge
statesz = +4, +5, and+6. The bath gas pressure 4× 10−4 Torr. At t = 0 ions having thermal kinetic energy were distributed uniformly
over a cylinder of 4.2 mm o.d. The collisional cooling timet = 4 ms. The number of super-ions used for the simulation is 450 (150 for
each charge state) per 4 mm axial interval; the charge of each super-ion corresponds to 832 ion charges. The linear charge density is
8 × 10−11, 1× 10−10, and 1.2 × 10−10 C/m for each charge state correspondingly. The RF octopole parameters are as follows: inscribed
radiusρ = 4 mm, VRF = 500V0−p , frequency 3000 kHz, stability parameters[30] qN1 = 0.202 (+6 ions), qN2 = 0.168 (+5 ions), and
qN3 = 0.135 (+4 ions). The radial borders of the stratified ion structure estimated under the low-ion energy approximation[30] are
0–2.107 mm for+6 ions, 2.172–2.403 mm for+5 ions, and 2.494–2.626 mm for+4 ions.

ial ion–ion interactions. We have used an alternative
three-dimensional model (seeSection 2) to estimate
the space charge influence on the ion kinetic energy
relaxation in the axial direction. Preliminary results
have confirmed that the ion–ion interaction results
in a faster ion kinetic energy relaxation at pressures
∼0.1 mTorr, for both radial and axial components
of ion kinetic energy. Quantitative results using the
three-dimensional approach will require a computa-
tion power at least one order of magnitude greater
than in the present study (which used a 1 GHz pro-
cessor PC).

All results shown so far were obtained for an
RF quadrupole. The computer model used can also
simulate RF multipoles of any order. These observa-
tions can be generalized for higher order multipoles,
if corresponding theoretical relationships are used
[18–20,30]. As an example, we show the radial ion
density distribution simulated for an RF octopole,
Fig. 12. The collisional relaxation time estimated
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for parameters inFig. 12 is τ = 2 ms. The simula-
tion has shown an established stationary ion density
distribution for t > 4 ms, in agreement with the ex-
pected completion of collisional relaxation. A distinct
stratified structure is produced, with radial positions
consistent with theoretical values, listed in the caption
for Fig. 12.

4. Conclusions

A computer model based on the direct calculation
of ion trajectories in RF multipole electric fields, to-
gether with realistic simulations of ion–neutral and
ion–ion interactions, has allowed us to study details of
the ion cloud relaxation dynamics and the equilibrium
ion cloud shape in two-dimensional RF multipole ion
traps. Simulations have confirmed that with increas-
ing the stored ion population the radial size of the
ion cloud increases. The equilibrium distribution pa-
rameters, such as ion number density, radial size, and
diffusion spread of the radial border, were found to
be consistent with theoretical estimates. We conclude
that the simulations confirm theoretical relationships
for the two-dimensional RF multipole ion trap ion ca-
pacity [20]. Taking into account the diffusion “wing”
of the distribution results in a somewhat higher ca-
pacity for samem/z ions with higher ion charge (i.e.,
higher mass).

In the case of an ion cloud consisting of several
m/z ion species, simulated using three charge states of
m = 6000 ions, the simulations have confirmed that
ions of differentm/z occupy on average different ra-
dial positions, with higherm/z ions occupying higher
radii. This stratified structure becomes more distinct
for higher stored ion populations, and for reduced
bath gas pressures. The diffusional spread of the ra-
dial borders decreases with increasing mass, resulting
in more distinct stratification for multiply charged
ions, compared to singly charged ions that have same
m/z values. An additional smearing of the borders
arises due to ion RF oscillations,,rRF = qmr [30],
whereqm is q-parameter,Eq. (2), andr is the radial
position. In all cases considered hereqm � 0.91, so

that ions are far from instability. Thus,rRF is small,
�r. The space charge influence on the ion stability is
not confirmed by simulations for lowqm conditions.
In contrast, lowerm/z ions drift to smaller radial po-
sitions, with characteristic times much shorter than
the collisional relaxation time (Fig. 10).

The model presented uses the classical hard spheres
approach for ion–neutral collisions. Although ideal-
ized, the approach allows one to observe details of
the ion collisional relaxation process in the context
of the standard model. The ion relaxation dynam-
ics are followed for realistic conditions that include
RF-driven ion motion and ion–ion interactions. Con-
version of the kinetic energy between secular axial
and radial components and the kinetic energy of RF
oscillations is observed. We have estimated character-
istic times for establishing the stratified structure of
the ion density distribution and for relaxation of axial
and radial components of the ion secular kinetic en-
ergy. The ion energy relaxation for zero space charge
conditions proceeds with a characteristic time given
by collisional relaxation theory. Faster relaxation
rates are observed for conditions of frequent ion–ion
interactions. Simulations indicate that ion–ion cool-
ing can result in the faster relaxation and lower than
thermal values of the random radial kinetic energy at
low-bath gas pressures and high ion populations. As a
result, the radial layers of differentm/z ions acquire a
sharper, more distinct structure under such conditions.

The detailed description of the ion density distri-
bution obtained allows one to derive basic conditions
for efficient, non-discriminative ion accumulation and
storage. Conditions causing full relaxation of the ion
kinetic energy are important, particularly for its radial
component (which defines the radial spread of the
ion density distribution). This can be achieved using
a sufficiently high buffer gas pressure and small ini-
tial ion kinetic energy. The axial DC potential well
depth should be small enough to minimize the ini-
tial ion kinetic energy, yet still sufficient for trapping
sufficient ion charge, as estimated in Ref.[20]. Exper-
imental results[7,14,41] indicate that the DC offset
between the accumulation multipole and orifices at
its ends influences observed ion fragmentation and
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mass-discrimination phenomena. It is interesting to
note that the amount of charge trapped in the RF mul-
tipole can be much greater than the ion population
needed for FT ICR mass analysis, e.g., 109 elemen-
tary charges per meter forFigs. 4–10. These high-ion
populations result in a significant alteration of the
ion-optical properties of the RF multipole, leading to
additional mass-discrimination effects, not only for
the ion cloud in equilibrium, but also for ion trap-
ping, relaxation, and subsequent extraction processes.
One can assume that existing experimental observa-
tions for the high accumulated ion populations also
exhibit a combination of mass-discrimination effects
resulting from ion accumulation, extraction, transport
to the mass analyzer, and the mass analysis itself.
Experiments have shown that restricting the accu-
mulated ion population to below a certain limit can
reduce mass discrimination, e.g., when using reduced
axial DC trapping voltages[41]. In the recently de-
scribed DREAMS approach[17], the ion population
is controlled in a data-dependent fashion, which pre-
vents the accumulation quadrupole from overfilling
and results in further improvement in sensitivity and
dynamic range.
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